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Hierarchical Packet Fair Queueing AlgorithmsJon C. R. Bennett Hui Zhang�FORE Systems Inc. Carnegie Mellon Universityjcrb@fore.com hzhang@cs.cmu.eduAbstractIn this paper, we propose to use the idealized Hierarchi-cal Generalized Processor Sharing (H-GPS) model to si-multaneously support guaranteed real-time, rate-adaptivebest-e�ort, and controlled link-sharing services. We designHierarchical Packet Fair Queueing (H-PFQ) algorithms toapproximate H-GPS by using one-level variable-rate PFQservers as basic building blocks. By computing the systemvirtual time and per packet virtual start/�nish times in unitof bits instead of seconds, most of the PFQ algorithms in theliterature can be properly de�ned as variable-rate servers.We develop techniques to analyze delay and fairness prop-erties of variable-rate and hierarchical PFQ servers. Wedemonstrate that in order to provide tight delay boundswith an H-PFQ server, it is essential for the one-level PFQservers to have small Worst-case Fair Indices (WFI). Wepropose a new PFQ algorithm called WF2Q+ that is the�rst to have all the following three properties: (a) provid-ing the tightest delay bound among all PFQ algorithms, (b)having the smallest WFI among all PFQ algorithms, and (c)having a relatively low asymptotic complexity of O(log N).Simulation results are presented to evaluate the delay andlink-sharing properties of H-WF2Q+ , H-WFQ, H-SFQ, andH-SCFQ.1 IntroductionFuture integrated services networks will support multipleservice classes that include real-time service, best-e�ort ser-vice, and others. In addition, they will need to supportlink-sharing [6], which allows resource sharing among tra�cstreams that are grouped according to administrative a�l-iation, protocol, tra�c type, or other criteria. Figure 1 (a)shows an example where there are 11 agencies sharing theoutput link. The administrative policy dictates that AgencyA1 gets at least 50% of the link bandwidth whenever it hastra�c. In addition, to avoid starvation of the best-e�orttra�c, of the 50% of the bandwidth assigned to A1, best-e�ort tra�c should get at least 20% if there is su�cientdemand.�This research is sponsored by DARPA under contract numbersN66001-96-C-8528 and N00174-96-K-0002, and by a NSF CAREERAWARD under grant number NCR-9624979. Views and conclusionscontained in this document are those of the authors and should notbe interpreted as representing the o�cial policies, either expressed orimplied, of the United States Government.

It is important to design mechanisms to meet the goalsof link sharing and di�erent service classes simultaneously.The uid Hierarchical Generalized Processor Sharing (H-GPS) system provides a general and exible framework tosupport hierarchical link sharing and tra�c management fordi�erent service classes. H-GPS can be viewed as a hierar-chical integration of one-level GPS servers. With a one-levelGPS, there are multiple packet queues, each associated witha service share. During any time interval when there arebacklogged queues the server services all backlogged queuessimultaneously in proportion to their corresponding serviceshares. With an H-GPS server, the queue at each internalnode is a logical one, and the service it receives is distributedinstantaneously to its child nodes in proportion to their rela-tive service shares. This service distribution follows the hier-archy until it reaches the leaf nodes where there are physicalqueues.It has been shown that with a one-level GPS: (1) anend-to-end delay bound can be provided to a session if thetra�c on that session is leaky bucket constrained [12], (2)bandwidth is fairly distributed to competing sessions [5],and (3) the sources can accurately estimate the availablebandwidth to them in a distributed fashion [9]. The �rstproperty forms the basis for supporting real-time tra�c [2]and the third property enables robust and distributed end-to-end tra�c management algorithms for best-e�ort traf-�c [9, 14]. H-GPS will maintain the �rst and the third prop-erties, but distribute excess bandwidth unused by a sessionaccording to the hierarchy rather than just service shares ofsessions. Therefore, the simple H-GPS con�guration in Fig-ure 1 (b) simultaneously supports all three goals, namely,link-sharing, real-time tra�c management, and best-e�orttra�c management.While H-GPS provides a simple model for supportingintegrated services networks, it is de�ned in a hypotheti-cal uid system that cannot be precisely implemented. Inthis paper, we design packet approximation algorithms ofH-GPS. In the literature, a number of one-level Packet FairQueueing (PFQ) algorithms have been proposed to approx-imate the uid GPS algorithm [1, 5, 7, 8, 12, 13, 17]. To re-duce the implementation complexity, they all use the notionof a system virtual time function that tracks the progressin the uid system. As we will show in Section 2, the sametechnique based on a single system virtual time functiondoes not apply to packet algorithms approximating H-GPS.In this paper, we propose to approximate H-GPS by us-ing one-level PFQ servers as basic building blocks and orga-nizing them in a hierarchical structure. The resulted Hier-archical Packet Fair Queueing (H-PFQ) algorithms shouldhave the following properties: (1) tight per session delaybounds that are comparable to a H-GPS server, (2) band-width distribution in a hierarchical fashion that is similarto a H-GPS server, and (3) a relatively low complexity. To
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(a) (b)Figure 1: A Link Sharing Exampleconstruct such a H-PFQ server, the one-level server needsto have the following properties: (a) tight per session delaybound as compared to the one-level GPS server, and (b) arelatively low complexity. In addition, as we will demon-strate, to achieve tight delay bounds in the H-GPS server,one-level PFQ servers also need to provide (c) small Worst-case Fair Indices (WFI's) as de�ned in [1]. Most of thepreviously proposed PFQ algorithms [5, 7, 8, 12, 17] do nothave small WFI's. In fact, they all have WFI's that growproportionally to the number of queues in the system. As aresult, the delay bounds provided by H-PFQ servers made ofthese PFQ's are much larger than those provided by H-GPS.The only exception is Worst-case Fair Weighted Fair Queue-ing algorithm (WF2Q), which is proven to provide smallestWFI's among all PFQ algorithms [1]. However, WF2Q usesa system virtual time function with a complexity of O(N).We propose a new algorithm that maintains all the im-portant properties of WF2Q, but has a lower complexitythan WF2Q. We call the new algorithm WF2Q+ . Simu-lation results are presented to illustrate the advantages ofH-WF2Q+ over H-WFQ, H-SFQ, and H-SCFQ.2 Fluid and Packet SystemsThroughout the paper, we discuss two types of systems:uid system in which the tra�c is in�nitely divisible andmultiple tra�c streams can receive service simultaneously,and packet systems in which only one tra�c stream can re-ceive service at a time and the minimum service unit is apacket. While uid systems cannot be realized in the realworld, they are conceptually simple and some of them haveproperties that are highly desirable for network control. Forthese uid systems, people have studied the correspondingpacket approximation algorithms.In this section, we �rst review Generalized ProcessorSharing (GPS), and illustrate how it can be approximatedby packet algorithms based on virtual time functions. Wethen de�ne Hierarchical GPS (H-GPS) and show that thesame technique cannot be applied directly to H-GPS.2.1 Packet Approximation of GPSA one-level GPS server with N queues is characterized byN positive real numbers, �1; �2; � � � ; �N . Let Wi(t1; t2) bethe amount of session i tra�c served in the interval [t1; t2],W (t1; t2) be the total amount of service provided by theserver during the same period. A work-conserving GPS

server is de�ned as one for whichWi(t1; t2)�i = W (t1; t2)Pj2B(t1) �j 8i 2 B(t1) (1)holds for any interval [t1; t2) during which B(�), the set ofbacklogged sessions at time � , does not change.There are two noteworthy points. First, in the de�nitionof the GPS algorithm, there is no assumption on whether theserver rate is constant or variable. Since an internal nodein a hierarchical server is a variable rate server, this ensuresthat H-GPS is properly de�ned. Second, while �0s can bearbitrary positive numbers, it is the relative ratio's amongthem rather than the exact numbers that are important. Forexample, given an arbitrary set of �0s, we can de�ne a newset of �̂'s that are normalized with respect to the sum of all�0s, i.e., �̂ = �iPNi=1 �i . The GPS systems de�ned by �'s and�̂'s are identical. Without losing generality, we assume thatPNi=1 �i = 1 holds.From (1), it immediately follows thatWi(t1; t2)�i = Wj(t1; t2)�j (2)holds for any interval [t1; t2] during which queues i and jare continuously backlogged. That is, the server services allbacklogged sessions simultaneously, in proportion to theirservice shares. In additionWi(t1; t2) � �iW (t1; t2) (3)holds for any interval [t1; t2] during which queue i is contin-uously backlogged, i.e., queue i gets a minimum share of theserver's capacity during any of its backlogged period regard-less of the behaviors of other sessions. In the special case ofa �xed-rate server with rate r, i.e., W (t1; t2) = r(t2 � t1),(3) becomes Wi(t1; t2) � ri(t2 � t1) (4)where ri = �ir is the minimum rate guaranteed to the ses-sion. With such a strong bandwidth guarantee, GPS canalso provide a worst-case delay bound for a session thatis constrained by a leaky bucket with an average rate nogreater than ri [12].A good packet approximation algorithm of GPS wouldbe one that serves packets in increasing order of their �nishtimes in the uid GPS system [5, 12]. However, when thepacket system is ready to choose the next packet to trans-mit, it is possible the next packet to depart under the uid
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Measured by Seconds Measured by BitsV (t) R tt0 1Pi2BGPS(�) �i d� R tt0 r(t)Pi2BGPS(�) �i d�Ski maxfF k�1i ; V (aki )g maxfF k�1i ; V (aki )gF ki Ski + Lkiri Ski + Lki�iTable 1: Calculation of Virtual Timessystem have not arrived at the packet system. Waiting forit requires knowledge of the future and also causes the sys-tem to be non-work-conserving. To have a work-conservingpacket system, the packet server must choose a packet totransmit based only on the state of the uid system up totime � . In Weighted Fair Queueing (WFQ) [5], when theserver is ready to transmit the next packet at time � , itpicks, among all the packets queued in the system at � , the�rst packet that would complete service in the correspond-ing GPS system if no additional packets were to arrive aftertime � . Since packet �nish times will change when sessionsbecome backlogged or unbacklogged, a naive implementa-tion of WFQ is to re-compute the �nish times of all packetsin the GPS system whenever a session becomes backloggedor unbacklogged.By observing the following important property of GPS [12],a more practical implementation of WFQ is possible.Property 1 The relative �nish order of all packets that arein the system at time � is independent of any packet arrivalsto the system after time � . That is, for any two packets pand p0 at time � in a GPS system, if p �nishes service beforep0 assuming there are no arrivals after time � , p will �nishservice before p0 for any pattern of arrivals after time � .With this property, it is possible to maintain the relativeGPS �nish order for packets in the WFQ system by using apriority queue mechanism [5, 12]. Such an implementation isbased on the notion of a system virtual time function V (�),which is the normalized fair amount of service that all back-logged sessions should receive by time � in the GPS system.Each packet pki (kth packet on session i) has a virtual startand �nish time Ski and F ki , where V �1(Ski ) and V �1(F ki )are the times packet pki starts and �nishes services in theGPS system respectively. Another way of interpreting F kiis that it represents the amount of service, normalized withrespect to its service share, session i has received right afterpacket pki is served. In the GPS system, all backlogged ses-sions should receive the same normalized amount of service.Since both the system virtual time and the per packet vir-tual start/�nish times represent the normalized amount ofservice, they are measured in unit of bits. In the special caseof a �xed rate server, the elapsed time of a backlogged pe-riod is also a measure of the service provided by the server,therefore, virtual times can also be measured in unit of sec-onds. The exact algorithm for computing virtual times areshown in Table 1, where BGPS(�) is the set of backloggedqueues at time � , t0 is the beginning of the system back-logged period that includes t, r(�) is the server rate at time� , and aki and Lki are the arrival time and the length ofpacket pki respectively. Notice that the de�nition of virtualtimes in unit of bits is more general, and is applicable toboth �xed-rate and variable-rate servers.Based on Property 1, for all packets present in the packetsystem at time � , their relative �nish order in GPS is thesame as the relative order of their virtual �nish times. There-fore, WFQ can be implemented by the \Smallest virtual

Finish time First" (SFF) policy: when the server selects thenext packet for service at time � , it picks the packet withthe smallest virtual �nish time. An important advantage ofthis virtual-time-function-based implementation is that thevirtual �nish time of a packet can be computed at the packetarrival time and need not to be re-computed even if the set ofbacklogged sessions change in the future. The system virtualtime function, though, does need to be re-computed whenthe set of backlogged sessions change. Since there can beN sessions that become backlogged or unbacklogged duringan arbitrarily small interval, the worst case complexity ofcomputing VGPS(:) is O(N) [7]. It is possible to have otherPacket Fair Queueing (PFQ) algorithms based on virtualtime functions with lower worst-case complexity [7, 8, 17].Later in this paper, we will propose a more accurate vir-tual time function with a worst-case complexity of O(logN). Therefore, by exploiting Property 1 of GPS, it is pos-sible to design virtual-time-function-based PFQ algorithmsthat have an overall complexity of O(log N).2.2 H-GPSA H-GPS server can be represented by a tree with a positivenumber �n associated with each node n. The root node,denoted by R, corresponds to the physical link and eachleaf node corresponds to a session with a queue of packets.A non-leaf node is called backlogged if at least one of itsleaf descendent nodes is backlogged. Let Wi(t1; t2) be theamount of session i tra�c served in the interval [t1; t2], andWn(t1; t2) =Pi2leaf(n)Wi(t1; t2), where leaf(n) is the setof the leaf descendent nodes for node n. Also, for any noden, let p(n) and child(n) denotes its parent node and set ofchild nodes respectively. A work-conserving H-GPS serveris de�ned as one for whichWm(t1; t2)�m = Wp(m)(t1; t2)Pq2Bp(m)(t1) �q (5)holds for any interval [t1; t2) during which node m is contin-uously backlogged and Bp(m)(�), the set of backlogged childnodes of p(m) at time � , does not change. It immediatelyfollows that Wm(t1; t2)�m = Wn(t1; t2)�n (6)holds for any interval [t1; t2] during which two sibling nodesm and n are continuously backlogged.Assuming Pi2leaf(R) �i = 1 and Pm2child(n) �m = �n,it can be shown that (3) holds also for H-GPS. Therefore, H-GPS can provide the same minimum bandwidth and delaybound guarantees for each session as GPS. The major dif-ference between GPS and H-GPS is that while (2) holds forany two queues in GPS, (6) holds only for sibling nodes inH-GPS. Since in H-GPS packet queues are associated withonly leaf nodes, the bandwidth is not always distributed toall queues in proportion to their service shares as in GPS.When a session cannot fully utilize its share of the service,the excess service is distributed according to the hierarchy.H-GPS is also de�ned in a uid system, therefore needsto be approximated by a packet algorithm. While it is possi-ble to design practical packet approximation algorithms forGPS based on a single system virtual time function, this isnot the case with H-GPS. The main reason is that Property1 does not hold for H-GPS, i.e., with H-GPS, the relativeorder of packet �nish times is dependent on future arrivals.
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Consider the example where the root of H-GPS has twochildren A and B with service shares of 0.8 and 0.2 respec-tively. Node B is a leaf node while node A has two child leafnodes A1 and A2 with service shares of 0.75 and 0.05. Letthe link speed be 1 and all packets have the same length of1. At time 0, A1 has an empty queue, A2 and B have manypackets queued. Thus, A2 and B will have 80% and 20% ofthe link bandwidth respectively. With the assumption thatthere are no future arrivals, the �nish times in the H-GPSserver are 1.25, 2.5, 3.75, ..., for A2 packets, and 5, 10, 15,..., for B packets. Therefore, at time 0, the relative orderof packets is: p1A2, p2A2, p3A2, p4A2, p1B , p5A2, .... Now assumethat a sequence of A1 packets arrive at time 1. According tothe bandwidth distribution hierarchy, the bandwidth sharesfor A1, A2, B will be 75%, 5%, and 20% respectively. Whilethis will not a�ect the �nish times for session B packets, itdoes a�ect the �nish times for session A2 packets. Betweentime [0,1], only 80% of the �rst packet of session A2 hasbeen served. The rest of the 20% of the �rst packet and allthe remaining packets will be served at 5% of the link rate.Therefore, the �nish times are 5, 25, 45, 65, � � �. That is,the relative ordering between session A2 and B packets havechanged after the arrival of session A1's packets.In a GPS system, during any period two sessions areboth backlogged, the ratio between the services they receiveis a constant regardless of future packet arrivals of othersessions. In a H-GPS system, this ratio is a�ected by othersessions in the hierarchy. This is the fundamental reasonwhy Property 1 does not hold for H-GPS.Without the relative-packet-order-invariant property, theconcept of packet virtual �nish times is not applicable. There-fore, the technique based on a single system virtual timefunction to approximate GPS does not apply to H-GPS.3 H-PFQIn this paper, we propose to approximate H-GPS by usingone-level PFQ servers as basic building blocks and organiz-ing them in a hierarchical structure. We call the resultedalgorithms Hierarchical Packet Fair Queueing (H-PFQ).A PFQ server node in a hierarchy di�ers from a stan-dalone PFQ server in two aspects: it is a variable-rate serverand the queues it serves do not have to be FIFO. As wediscussed in the previous section, both GPS and WFQ areproperly de�ned as variable-rate servers. In fact, by comput-ing the system virtual time and per packet virtual start/�nishtimes in unit of bits, most of the PFQ algorithms proposedin the literature [1, 7, 8, 13, 17] are variable-rate servers.Therefore, for PFQ nodes in an H-PFQ hierarchy, the vir-tual times should be measured in unit of bits.The second di�erence between a standalone server and aserver node in a hierarchy is that a standalone server servesper session FIFO queues whereas a server node serves persubtree logical queues that are not necessarily FIFO. A num-ber of operations in the implementation of PFQ servers needto use packets from the head of each queue. While it is ob-vious which packet is at the head in a FIFO queue, we needto de�ne the head packet for the logical queue that is asso-ciated with a child subtree.In the following, we present an implementation frame-work of H-PFQ where an internal server node can be anyPFQ algorithm that is properly de�ned as a variable rateserver. The main data structure is a tree representation ofthe hierarchy. The root node represents the physical linkand a leaf node represents a physical queue. Each non-rootnode n is connected to its parent p(n) by a logical queue Qn.

Vn(t) the system virtual time function for node n�n service share for node n.Qn the logical queue for node nQn(t) the packet at head of Qn at time tbQi the real queue for the leaf node ibQi(t) the packet at head of bQi at time tsn(t) the virtual start time of the packet Qn(t)fn(t) the virtual �nish time of the packet Qn(t)Ln(t) the length of the packet Qn(t)Busyn(t) true if node n is backlogged at tp(n) parent node of node nTable 2: Notations used in the sectionFor the parent node to implement a PFQ algorithm, only thehead of the logical queue is needed. Therefore, at any giventime, only the reference to the packet, which is the head ofthe logical queue, is stored in queue Qn. The actual packetremains stored in the real queue at the leaf node until thelink �nishes transmission of the packet. For consistency, wealso de�ne QR for the root server to be the packet currentlybeing transmitted. At any given time when the server isbusy, there exists a path from a leaf to the root such thatthe logical queues of all nodes traversed by the path pointto the same physical packet that is currently being trans-mitted. The logical queues and associated data structuresat each node are updated when a packet arrives at an emptysession queue at the leaf node, or when the link is pickingthe next packet to transmit. In the following, we presentthe pseudocode to describe the details of the algorithm.Arrive(i; Packet)1 Enqueue( bQi; Packet)2 if Qi(t) 6= ;3 then return4 Qi(t) Packet5 si(t) max(fi(t); Vp(i)(t))6 fi(t) si(t) + Li(t)�i7 if Busyp(i) = FALSE8 then Restart-Node(p(i))When a packet arrives at a leaf node i, if session i's logicalqueue for its parent node Qi is not empty, the packet is justappended to the end of the physical FIFO queue for thesession. Otherwise, the packet also becomes the head of thelogical queue Qi. The virtual start and �nish times for thelogical queue are then updated, and the procedure Restart-Node() is called with the parent node if it is currently idle.Restart-Node(n)1 m Select-Next(n)2 if m 6= ;3 then4 ActiveChildn  m5 Qn(t) Qm(t)6 if Busyn(t) = TRUE7 then sn(t) fn(t)8 else sn(t) max(fn(t); Vp(n)(t))9 fn(t) sn(t) + Ln(t)�n10 Busyn  TRUE11 Update-V(n)12 else13 ActiveChildn  ;14 Busyn  FALSE15 if (n 6= R) and (Qp(n)(t) = ;)
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16 then Restart-Node(p(n))17 if (n = R) and (QR(t) 6= ;)18 then Transmit-Packet-To-Link(Qn(t))A node is restarted whenever it needs to select a newpacket to transmit. This occurs either when a packet ar-rives to an idle node or when the last packet �nishes be-ing transmitted on the physical link. If a packet arrives atan idle node n, the Busyn ag will be FALSE, in whichcase the new start time for the node is computed usingsn(t) = max(fn(t); Vq(t)). If the node is not idle and has apacket to transmit, the new start time will be set to the pre-vious �nish time. If the node has no more packets to send,the busy ag will be cleared. If the current node is not theroot node, and its parent node does not have a packet inits logical queue Qq , the node will restart its parent node.If the current node is the root node and there is a packetin the queue, the packet will be transmitted over the link.Di�erent PFQ algorithms have di�erent packet selection andsystem virtual time updating algorithms. For example, SFQuses the Smallest virtual Start time First (SSF) policy andupdates the system virtual time based on the virtual starttime of the packet currently being served, whereas SCFQuses the Smallest virtual Finish time First (SFF) policy andupdates the system virtual time based on the virtual �nishtime of the packet currently being served. These algorithmsare implemented in functions Select-Next and Update-V.Reset-Path(n)1 Qn(t) ;2 if Leaf(n) = TRUE3 then4 Dequeue(bQn)5 if bQn(t) 6= ;6 then7 Qn(t) bQn(t)8 sn(t) fn(t)9 fn(t) sn(t) + Ln(t)rn10 Restart-Node(p(n))11 else12 m ActiveChildn13 ActiveChildn  ;14 Reset-Path(m)When the link �nishes transmitting a packet, it callsReset-Path(R). Reset-Path descends the tree along the pathto the leaf node whose packet just �nished transmission. Ateach node along the path, it resets the logical queue to beempty. When the leaf node is reached, the �rst packet ofthe queue is dequeued and its parent node is restarted. Dur-ing the descent, all pointers are cleared, but not the busyags. During the process of picking a new packet, the busyag acts as a reminder to the Restart-Node function that apacket has just �nished transmission. If there are no morepackets for this node to send, Restart-Node will clear thebusy ag.4 Delay Analysis of H-PFQIn the previous section, we presented an algorithm to imple-ment PFQ by integrating one-level PFQ's into a hierarchy.While most of the PFQ algorithms proposed in the literaturecan be used for this purpose, the delay bounds provided bythe resulted H-PFQ servers can vary signi�cantly with dif-ferent PFQ algorithms.In this section, we �rst give an example to show that
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2WF  Q service orderFigure 2: WFQ, SFQ, and WF2Qwith most of the PFQ algorithms proposed in the litera-ture the resulted H-PFQ servers provide much larger delaybounds than those by H-GPS. We then present the conceptof Worst-case Fair Index (WFI) and demonstrate that delaybounds provided by an H-PFQ server relates not only to de-lay bounds provided by PFQ server nodes in the hierarchy,but also to WFI's provided by the PFQ servers. In par-ticular, in order to achieve tight delay bounds for H-PFQ,PFQ server nodes in the hierarchy need to have small WFI's.WF2Q is the only algorithm proposed in the literature thatprovides tight WFI's, however it has a relatively high com-plexity. We propose a new algorithm called WF2Q+ thatnot only provides tight delay bounds and low WFI's, butalso has a relatively low complexity.4.1 Limitation of Existing PFQ AlgorithmsIn [1], the following example is used to illustrate the largediscrepancies between the services provided by GPS andWFQ. Assume that there are 11 sessions with packet sizeof 1 sharing a link with the speed of 1, �1 = 0:5, and�i = 0:05; i = 2; � � � ; 11. Session 1 sends 11 back-to-backpackets starting at time 0 while each of all the other 10sessions sends only one packet at time 0. If the server isGPS, it will take 2 time units to transmit each of the �rst10 packets of session 1, one time unit to transmit the 11thpacket, and 20 time units to transmit the �rst packet fromeach of the other sessions. Denote the kth packet of sessionj to be pkj , then in the GPS system, the �nish time is 2k forpk1 ; k = 1 : : : 10, 21 for p111 , and 20 for p1j ; j = 2; � � � ; 11. Un-der WFQ, packets will be transmitted according to their �n-ish times in the GPS system. Therefore, the �rst 10 packetsof session 1 (pk1 ; k = 1 : : : 10) will be transmitted, followed byone packet from each of sessions 2; � � � ; 11 (p1j ; j = 2; � � � ; 11),and then the 11th packet of session 1 (p111 ). In the example,between time 0 and 10, WFQ serves 10 packets from ses-sion 1 while GPS serves only 5. After such a period, WFQneeds to serve other sessions in order for them to catch up.Intuitively, the di�erence between the amounts of serviceprovided to each session by WFQ and GPS is a measure ofinaccuracy of WFQ in approximating GPS. In this case, theinaccuracy is (N � 1)=2 packets, where N is the number ofsessions sharing the link.Such an inaccuracy introduced by WFQ will signi�cantly
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a�ect the delay bound provided by H-WFQ. Consider theexample with a link sharing structure in Fig. 1 (a) and thepacket arrival sequence in Fig. 2. Assume that WFQ is usedinstead of GPS and the �rst 10 packets of class A1 belongto the best-e�ort sub-class and the 11th packet belong tothe real-time sub-class. Even though the real-time sub-classof A1 reserves 30% of the link bandwidth, when a real-timepacket arrives, it may still have to wait 10 packet transmis-sion times. Now consider the example where there are 1001classes sharing a 100 Mbps link with the maximum packetsize of 1500 bytes. For a real-time session reserving 30% ofthe link bandwidth, its packet may be delayed by 120 msin just one hop! In contrast, if GPS or H-GPS is used, theworst-case delay for a packet arriving at an empty A1 real-time queue is 0.4 ms. Similar examples can be constructedfor SCFQ [7], SFQ [8], and FBFQ [17].4.2 WFI and Its E�ect on Delay Bounds of H-PFQIn [1], we introduce a metric called Worst-case Fair Index(WFI) to characterize PFQ servers. In this section, we willdevelop analysis techniques to show that delay bounds pro-vided by an H-PFQ server relates not only to delay boundsprovided by PFQ server nodes in the hierarchy, but also toWFI's provided by the PFQ servers. In particular, in orderto achieve tight delay bound for H-PFQ, PFQ server nodesin the hierarchy need to have small WFI's.De�nition 1 A server s is said to guarantee a Time Worst-case Fair Index (T-WFI) of Ai;s for session i, if for anytime � , the delay of a packet arriving at � is bounded aboveby 1riQi(�) +Ai;s, that is,dki � aki � Qi(aki )ri +Ai;s (7)where ri is the rate guaranteed to session i, Qi(�) is thenumber of bits in the session queue at time � (including thepacket that arrives at time �), aki and dki are the arrival anddeparture times of the kth packet of session i respectively.For the purpose of this paper, a packet is said to arrive orleave the server if its last bit arrives or leaves the server. In-tuitively, Ai;s represents the maximum time a packet comingto an empty queue needs to wait before receiving its guar-anteed service rate. An important observation is that bothGPS and H-GPS have a WFI of 0. That is, with GPS orH-GPS, a packet coming to an empty queue can receive itsguaranteed service rate immediately after its arrival. How-ever, as illustrated in the example in Fig. 2, the T-WFI forWFQ can increases linearly as a function of the number ofsessions N.Since the previous de�nition of WFI applies only to astandalone server, which is �xed-rate and has only one level,we introduce a general de�nition of WFI that applies also toserver nodes in a hierarchy, which are variable rate servers.Again as in Sections 2 and 3, we generalize the de�nition bymeasuring WFI in unit of bits instead of seconds.De�nition 2 A server node s is said to guarantee a BitWorst-case Fair Index (B-WFI) of �i;s for session i, if forany packet pki the following holdsWi(t1; dki ) � �i�sWs(t1; dki )� �i;s (8)

where dki is the time pki departs the server, t1 is any timeinstant such that t1 < dki and session i is continuously back-logged during [t1; dki ], and �i�s is the service share guaranteedto queue i by server s.For a constant rate one-level server, �s = 1, andWs(t1; t2) =rs(t2 � t1). Therefore, (8) is equivalent to:Wi(t1; t2) � ri(t2 � t1)� �i;s (9)In this case, De�nition 2 subsumes De�nition 1 and�i;s = riAi;s holds. This can be easily established by lettingt1 = aki and using the following property for a FIFO queuei Wi(aki ; dki ) = Qi(aki ) (10)Before we proceed to establish the relationship between thedelay bound of an H-PFQ server and WFI's of PFQ servernodes, we �rst give the following de�nition of guaranteed ser-vice burstiness index (SBI), which is a generalized boundeddelay property that applies to both constant-rate and variable-rate servers.De�nition 3 A server s is said to guarantee a service bursti-ness index (SBI) of i;s to session i if for any packet pki ,there exists a time instant t1 within the server's busy pe-riod that includes also dki , where t1 < dki , Q(t�1 ) = 0, andQ(t1) 6= 0, such thatWi(t1; dki ) � �i�sWs(t1; dki )� i;s (11)holds where dki is the time pki departs the server and �i�s isthe service share guaranteed to queue i by server s.The de�nition of SBI has its root in the guaranteed ser-vice curve concept proposed by Cruz [3]. However, there areseveral di�erences. First, SBI is applicable to both constant-rate and variable-rate servers, while guaranteed service curveis de�ned only for constant-rate servers. Second, for SBI, weconsider only intervals that end at packet departure times,while Cruz considers intervals that end at arbitrary timeinstants. Since both SBI and guaranteed service curve areused to reason a session's delay property, considering onlytime intervals that end at packet departure times will re-sult in a tighter bound. Finally, in the de�nition of SBI, werequire that t1 and dki be within the same system busy pe-riod (but not necessarily in the same session i's backloggedperiod), while Cruz's de�nition does not have such a require-ment. Therefore, SBI represents a stronger guarantee thanthe guaranteed service curve. However, it can be shown thatall the analysis and results in [3] are applicable with our def-inition of SBI. Intuitively, for any work-conserving queueingsystem (including PFQ systems), system busy periods areinvariant with respect to the scheduling policy used, there-fore can be independently analyzed.While the de�nitions of WFI and SBI look similar, worstcase fairness is a stronger property than bounded serviceburstiness. In the case of the worst-case fair property, (11)needs to hold for all intervals that ends with dki and duringwhich session i is continuously backlogged. In the case ofthe guaranteed service burstiness property, (8) needs to holdfor only one interval that ends at dki and starts at the begin-ning of a session i's backlogged period. By letting t1 to bethe start of the backlogged period that includes dki , it imme-diately follows that a session's guaranteed WFI is also thesession's guaranteed SBI. The opposite is not always true.
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For example with WFQ, the guaranteed SBI for any sessionis Pmax. This is much smaller than the guaranteed WFIvalue, which can be as large as N � Pmax.In the following lemma, we establish the relationship be-tween the guaranteed SBI and guaranteed delay bound to aleaky bucket constrained session. A session i is constrainedby a leaky bucket (�i; �i) if the following holds for any in-terval [t1; t2] Ai(t1; t2) � �i + �i(t2 � t1) (12)where Ai(t1; t2) is the amount of session i bits arrived during[t1; t2].Lemma 1 Consider session i that is leaky bucket constrainedby (�i; ri). If a standalone server with a constant rate rguarantees an SBI of i;s to session i, it can guarantee adelay bound of �i+i;sri where ri = �i�s r.Proof. For a constant rate server, Ws(t1; t2) = r(t2 � t1)hold during any system backlogged period. Since the serverguarantees an SBI to session i, there exists a time instantt1, where t1 < dki , Qi(t�1 ) = 0, and Qi(t1) 6= 0 hold, suchthat Wi(t1; dki ) � �i�sWs(t1; dki )� i;s= ri(dki � t1)� i;s (13)Since session i has a FIFO queue and Qi(t�1 ) = 0, we haveWi(t1; dki ) = Ai(t1; aki ) (14)In addition, session i is leaky bucket constrained, thusAi(t1; aki ) � �i + ri(aki � t1) (15)Combining (13), (14), and (15), we have�i + ri(aki � t1) � ri(dki � t1)� i;s (16)Rearranging terms and dividing both sides by ri, we havedki � aki � �i + i;sri (17)Q.E.D.For most rate-based service disciplines [20], if the serverguarantees a delay bound ofDi to a leaky bucket constrainedsession, it also guarantees an SBI of riDi � �i to the ses-sion [3]. Therefore, bounded service burstiness property andbounded delay property are equivalent for standalone rate-based servers. Since the bounded service burstiness propertyapplies also to variable rate servers, it can be viewed as thegeneralized bounded delay property.From Lemma 1, it immediately follows that a boundedWFI for a session also implies a bounded delay. However,the delay bound calculated from the WFI may not be tightin some cases. For example, while the tight delay boundfor a leaky bucket constrained session in a WFQ serveris �iri + Pmaxr , the delay bound based on the WFI can be�iri + N�i Pmaxr , which is much larger. Intuitively, WFI isthe maximum amount of time a packet has to wait to re-ceive its fair share service when it comes to an empty queuei. The reason that a packet may have to wait for a long timeis that some packets related to it have received more servicethan deserved in a previous time period. In the case of a

standalone server, these packets must belong to the samesession i. In the case of a hierarchical server, these pack-ets may belong to sessions that share an ancestor node withsession i. Therefore, WFI does not bound delay tightly inthe case of a standalone server since it does not take intoaccount the fact that packets from the same session mayreceive more service in a previous time period. However,WFI is important in characterizing the delay in a hierar-chical server since the extra service received in the previoustime period may have been received by a session other thanthe one being considered.Now that we have de�ned WFI and SBI that are ap-plicable to both standalone servers and server nodes in ahierarchy, we are ready to derive WFI's and delay boundsprovided by an H-PFQ server. For a session i with H an-cestors in an H-PFQ server, we use p(i) to represent its par-ent node, ph(i) to represent the parent node of ph�1(i) forh = 1; � � � ;H, where p0(i) = i, p1(i) = p(i), and pH(i) = R.Theorem 1 For a session i with H ancestors in an H-PFQserver, it is guaranteed the following B-WFI�i;H�PFQ = H�1Xh=0 �i�ph(i) �ph(i) (18)where �ph(i) is the B-WFI for the logical queue at node ph(i)for the server node ph+1(i), h=0, � � �, H-1.The proof is given in Appendix A. Basically, the theo-rem states that the WFI provided to a session by an H-PFQserver is the weighted sum of WFI's of all the session's an-cestor servers.Since a bounded WFI also implies a bounded delay, itimmediately follows thatCorollary 1 For a session i with H ancestors in an H-PFQserver, if it is constrained by a leaky bucket (�i; ri), the delayof any packet in the session is bounded by�iri + H�1Xh=0 �ph(i)rph(i) (19)While Corollary 1 gives the delay bound for a leaky bucketconstrained session in an H-PFQ server, the bound is notthe tightest as it does not account for the situation wherepackets from the same session received more service in a pre-vious time period. The following theorem provides a tighterbound.Theorem 2 For a session i with H ancestors in an H-PFQserver, if it is constrained by a leaky bucket (�i; �i), the delayof any packet in the session is bounded byDi + H�1Xh=1 �ph(i)rph(i) (20)where �ph(i) is the B-WFI for the logical queue at node ph(i)for the server node ph+1(i), h=1, � � �, H-1, and riDi � �i isthe SBI guaranteed to session i by its parent server node, i.e.,Di is the delay bound guaranteed to session i by a standalonep(i) server.The proof of the theorem is given in Appendix B. Thetheorem states that the delay bound provided by an H-PFQserver to session i is the sum of the delay bound provided by
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session i's parent server to session i and the WFI's of all theother session i's ancestor nodes weighted by their guaranteedshares. This bound is tight when �ph(i)'s and Di are tight.This can be easily shown by constructing examples as inSection 4.1. Therefore, to achieve tight delay bounds in aH-PFQ server, the WFI's for the internal and root servernodes should be small.5 Worst-case Fair PFQ Algorithms5.1 WF2QAmong all PFQ algorithms proposed in the literature, theWorst-case Fair Weighted Fair Queueing (WF2Q) [1] is theonly one that provides tight WFI's.WF2Q di�ers from WFQ in that it uses the \SmallestEligible virtual Finish time First" (SEFF) policy instead ofthe popular SFF or SSF policies. With WF2Q, when theserver picks the next packet to transmit at time � , ratherthan selecting it from among all the packets at the serveras in WFQ, the server only considers the set of packets thathave started service in the corresponding GPS system, andselects the packet among them that has the smallest virtual�nish time. A packet is said to be eligible at time � if its vir-tual start time is no greater than the current system virtualtime.If we consider again the example in Section 4.1, at time0, all packets at the head of each session's queue, p1i , i =1; � � � ; 11, have started service in the GPS system. Amongthem, p11 has the smallest �nish time in GPS, so it will betransmitted �rst in WF2Q. At time 1, there are still 11packets at the head of the queues: p21 and p1i , i = 2; � � � ; 11.Although p21 has the smallest virtual �nish time, it will notstart service in GPS until time 2, therefore, it won't be eli-gible for transmission at time 1. The other 10 packets haveall started service at time 0 at the GPS system, thus areeligible, and one of them will be transmitted. At time 3,p21 becomes eligible and has the smallest �nish time amongall packets, thus it will be transmitted next. The serviceorder for all packets under WF2Q is shown as the last timeline in Fig. 2. As can be seen in the example, during anytime interval, the di�erence between the amounts of bitstransmitted by GPS and WF2Q is less than one packet size.Therefore, WF2Q is a more accurate approximation of GPSthan WFQ. The following theorem is proven in [1].Theorem 3 (1) WF2Q is a work-conserving policy.(2) WF2Q is worst-case fair for session i with the followingworst-case fair index�i;WF2Q = Li;max + (Lmax � Li;max)rir (21)(3) For a session i constrained by a leaky bucket (�i; ri),WF2Q guarantees a delay bound of �iri + Lmaxr .As can be seen, the WFI provided by WF2Q is independentof the number of sessions sharing the server. In the case ofLi;max = Lmax, �i;WF2Q will simply be Lmax. Since the B-WFI for a packet system is at least one packet size, WF2Q isan optimal packet policy with respect to the worst-case fairproperty. In addition, since the minimum di�erence betweena delay bound provided by a PFQ server and a GPS serveris one packet transmission time, both WFQ and WF2Q pro-vide the tightest delay bound among all PFQ algorithms.

5.2 WF2Q+While WF2Q provides the tightest delay bound and smallestWFI among all PFQ algorithms, it has the same worst-casecomplexity of O(N) as WFQ because they both need to com-pute VGPS(�).In this section, we present a new packet algorithm thatprovides the same delay bound and WFI as WF2Q, but witha lower complexity. Since this policy is also worst-case fair,but is simpler than WF2Q, we call it WF2Q+. WF2Q+ alsouses the SEFF policy. The novel aspect of WF2Q+ is theuse of a new system virtual time function VWF2Q+(�) thatachieves both low complexity and high accuracy in approxi-mating the ideal virtual time function used in GPS. While anumber of new virtual time functions have been proposed tosimplify the implementation of WFQ [7, 17], they all resultin PFQ algorithms with large WFI's. The unique advan-tage of VWF2Q+(�) is that the resulted WF2Q+ algorithmcombines all three properties that are important for a PFQalgorithm to be used in a H-PFQ server: tight delay bound,small WFI, and low algorithmic complexity.With WF2Q+, the virtual time function is de�ned asVWF2Q+(t+�) = max(VWF2Q+(t)+W (t; t+�); mini2B̂(t)(Shi(t)i ))(22)where W (t; t + �) is the total amount of service providedby the server during the period [t; t+ � ], B̂(t) is the set ofsessions backlogged in the WF2Q+ system at time t, hi(t) isthe sequence number of the packet at the head of the sessioni's queue, and Shi(t)i is the virtual start time of the packet.There are several noteworthy properties of VWF2Q+(�).First, if we view the system virtual time function as a func-tion of the amount of service provided by the server, VWF2Q+(�)is a strictly monotonically increasing function of time witha minimum slope of 1. We call this the \minimum slopeproperty" of VWF2Q+, which is important for a PFQ serverto provide delay bounds to leaky bucket constrained sourcesthat are within one packet transmission time of those pro-vided by GPS. The virtual time function VGPS(�), usedby both WFQ and WF2Q, has this property by using themarginal service rate of the GPS server as the slope, whichhas a minimum value of 1. Therefore, both WFQ and WF2Qcan provide tight delay bounds. On the other hand, the vir-tual time functions used by SCFQ [7] and SFQ [8] may havea slope of 0 during certain periods, and the delay boundsprovided by the resulted SCFQ and SFQ algorithms aremuch larger than those provided by WFQ and WF2Q. Thesecond important property of VWF2Q+(�), as provided bythe max over min operation in (22), is that it is at least aslarge as the minimum virtual start time of all packets at thehead of all queues. This has two implications. First, thisensures that a newly backlogged session has a virtual starttime at least as large as one of the existing backlogged ses-sions. This is important for the resulted WF2Q+ algorithmto achieve a low WFI. In addition, the property also ensuresthat at least one packet in the system has a virtual starttime no greater than the current system virtual time. Thisguarantees the resulted SEFF policy to be work-conservingas only packets with virtual start time no greater than thecurrent system virtual time are eligible for transmission.To simplify the implementation, we also modify the def-inition of virtual start and �nish times. With the old de�-nition as in Table 1, virtual start and �nish times need tobe maintained on a per packet basis. Usually this meansstamping the values of Ski and F ki in the header of packetpki . This overhead may not be acceptable for networks with
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small packet sizes, such as ATM networks. With the follow-ing de�nition, there is only one pair of Fi and Si that needsto be maintained for each session i. Whenever a packet pkireaches the head of the queue, Fi and Si are updated ac-cording to the followingSi = � Fi if Qi(aki�) 6= 0max(Fi; V (aki )) if Qi(aki�) = 0 (23)Fi = Si + Lkiri (24)where Qi(aki�) is the queue size of session i just before timeaki . With this de�nition, per session Si and Fi are also thevirtual start and �nish times of the packet at the head ofthe session queue.There are two major tasks associated with implementingWF2Q+: (a) computing the system virtual time function,and (b) maintaining the set of eligible sessions sorted byvirtual �nish times. Both can be accomplished with O(logN) complexity [19].The delay and worse-case fairness properties of WF2Q+ aregiven by the following theorem.Theorem 4 (1) WF 2Q+ is work-conserving.(2) WF 2Q+ is worst-case fair for session i with�i;WF2Q+ = Li;max + (Lmax � Li;max)rir (25)(3) For a session i constrained by a leaky bucket (�i; ri),WF 2Q+ guarantees a delay bound of �iri + Lmaxr .Since the proof is rather long, we will just present its out-line in this paper. The full proof will appear in a follow-uppaper. The proof is based on the theory of rate-proportionalservers developed in [18].While the de�nition of rate-proportional servers in [18] isbased on virtual time functions measured in unit of second,it can be easily extended to the more general de�nition withvirtual time functions measured in unit of bit. A uid rateproportional server with N sessions is characterized by Nnumbers �1; � � � ; �N , and a system virtual time function,which must satisfy the following two conditions:V (t2)� V (t1) � W (t1; t2) (26)V (t) � mini2B(t)Vi(t) 8 t (27)where (t1; t2] is any interval in a system backlog period, B(t)is the set of backlogged sessions in the uid system at timet, and Vi(�) is the virtual time function for session i, whichis iteratively de�ned as followsVi(t2) =8>>>>>>><>>>>>>>: Vi(t1)if Qi(�) = 0; 8 t1 < � < t2maxfV (t2); Vi(t2�)gif Qi(t2�) = 0 ^ Qi(t2) 6= 0Vi(t1) + Wi(t1;t2)�i PNj=1 �jif Qi(�) 6= 0; 8 t1 � � � t2 (28)At any given time, the server simultaneously service all ses-sions that have the minimum virtual time function, propor-tionally to their relative service shaes. Formally, during anytime period (t1; t2] in which, C(�), the set of backlogged ses-sions with the minimum virtual time function Vi(�), is un-changed, the server services all sessions in C(t1) such thatWi(t1; t2)�i = W (t1; t2)Pj2C(t1) �j 8i 2 C(t1) (29)
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11MbpsFigure 3: Example 1It can be shown that GPS is a special rate-proportionalserver with the system virtual time function VGPS(�). Infact, with GPS, Vi(�) = Vj(�) holds for any two sessionsbacklogged at time � , and therefore C(�) = B(�) holds forany time instance � .For each uid rate-proportional server, two PFQ algo-rithms can be de�ned based on the SFF and the SEFFpacket selection policies. For example, for GPS, WFQ andWF2Q are the corresponding PFQ algorithms with SFF andSEFF packet selection policies respectively. By applyingsimilar techniques that are used in [1] to prove the proper-ties of WF2Q, the following theorem can be established.Theorem 5 For any rate proportional server, its correspond-ing PFQ algorithm with the SEFF policy can provide to ses-sion i1. a delay bound of �iri + Lmaxr if the session is constrainedby a leaky bucket (�i; ri), and2. a WFI of Li;max + (Lmax � Li;max) rir .In addition, the following theorem holds.Theorem 6 WF2Q+ is a packet rate-proportional server withthe SEFF packet selection policy.The proof is rather long and will be presented in a follow-uppaper. The main results of Theorem 4 follow directly fromTheorems 5 and 6. In addition, WF2Q+ is work-conservingbecause there is at least one packet eligible for service duringany system backlogged period.Therefore, any PFQ algorithm that approximates a uidrate-proportional server with SEFF policy achieves the sameworst-case fairness and bounded delay properties as WF2Q.The unique advantage of WF2Q+ is that it uses a novelvirtual time function with a lower complexity.The Corollary below, which gives the delay bound forH-WF2Q+, follows directly from Theorem 2 and Theorem 4.Corollary 2 For a session i withH ancestors in a H-WF2Q+server, if it is constrained by a leaky bucket (�i; �i) andLmax = Li;max, the delay of any packet in the session isbounded by �iri + H�1Xh=0 Lmaxrph(i) (30)



www.manaraa.com

60 ms

40 ms

20 ms

0 ms
10000 ms8000 ms6000 ms4000 ms2000 ms

Delay (ms)

Time (ms)

Session RT-1 Delay for H-WFQ

60 ms

40 ms

20 ms

0 ms
10000 ms8000 ms6000 ms4000 ms2000 ms

Delay (ms)

Time (ms)

Session RT-1 Delay for H-SFQ

60 ms

40 ms

20 ms

0 ms
10000 ms8000 ms6000 ms4000 ms2000 ms

Delay (ms)

Time (ms)

Session RT-1 Delay for H-SCFQ

60 ms

40 ms

20 ms

0 ms
10000 ms8000 ms6000 ms4000 ms2000 ms

Delay (ms)

Time (ms)

Session RT-1 Delay for H-WF2Q+

Figure 4: Delay of RT-1 With Uncorrelated Cross Tra�c6 Simulation ExperimentsIn this section, we present simulation experiments to illus-trate the bounded delay and hierarchical link-sharing prop-erties of H-WF2Q+ . For the purpose of verifying, we hadtwo independent implementations of all the algorithms intwo di�erent simulators. All experiments were conducted inboth simulators and the results matched each other.6.1 Delay CharacteristicsIn this section we compare the packet delay distributionsfor a real-time session under four di�erent H-PFQ servers,H-WF2Q+ , H-WFQ, H-SFQ, and H-SCFQ. The service hi-erarchy is shown in Fig 3. The rate above the node is theguaranteed service rate for the node. The value inside thenode represents the node's service share with respect to itsparent node.The real-time session being measured is the leaf node la-beled RT-1 . It has a guaranteed service share of 0.81 fromits parent node which translates into a guaranteed rate of 9Mbps. Session RT-1 is a deterministic on/o� source with a25 ms on-period and a 75 ms o�-period. Session RT-1 has acontinuously backlogged sibling session BE-1 . As a result,nodes N1 , N2 , and NR are also continuously backlogged.We use two additional types of background tra�c: poissonsources that are labeled PS-n and constant rate sessions thatare labeled CS-n . All constant rate sessions have identicalstart times and a peak transmission rate equal to their guar-anteed rate. They �rst passed through a multiplexer beforethey arrive at the server, so that they do not have simul-taneous arrivals, but rather model the sort of packet trainburst that could be sent by individual users and/or networks

with high speed connections. For simplicity, we assume allsessions transmit 8 KB packets.We consider two scenario's: (a) uncorrelated cross tra�c,and (b) correlated cross tra�c.Fig. 4 shows the case when PS-n sources are transmit-ting at an average of 1.5 times their guaranteed rate andthe constant rate sources are not transmitting. As a resultall the PS-n sessions eventually become persistently back-logged. As we can see, while on average the delays for allfour algorithms are similar, the worst case packet delaysunder H-SFQ, H-SCFQ, and H-WFQ are larger than thoseunder H-WF2Q+ .For experiments shown in Fig. 5, everything remains thesame except that the correlated constant rate sessions areturned on. As can be seen, the worst-case delay increasessubstantially under H-WFQ, H-SFQ, and H-WFQ, but re-mains almost the same for H-WF2Q+ . H-SFQ is a�ectedmost by the presence of correlated tra�c. This can be un-derstood by the following intuitive explanation. Since thepackets are well spaced out for constant rate sessions, theyusually arrive at an empty session queue. With SFQ, thesepackets will be assigned the same virtual start time as thepacket currently being served, which has the smallest vir-tual start times among all backlogged packets. Since SFQpicks the packet with the smallest virtual arrival times, thenewly arrived packets will be served ahead of other back-logged packets, including RT-1 packets. If there is a burstof packet arrivals into empty queues for a short interval, thesystem virtual time will stop advancing, and only start ad-vancing again after these packets �nish service. As a result,the delay for other packets in the system will increase. Thiscan be seen also from the example illustrated in Fig. 2.
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Figure 5: Delay of RT-1 With Correlated Cross Tra�c6.2 Hierarchical Link SharingWe consider the link-sharing structure shown in Fig. 6(a),which has a multi-level hierarchy with two types of sources:TCP sources and deterministic on-o� sources. We will ex-amine the performance of sessions labeled TCP-f1,5,8,10,11gunder link-sharing when on-o� sources alternate between ac-tive and idle states. To see the e�ect of hierarchical link-sharing, we use one on-o� source for each level in the hi-erarchy. The bandwidth's and active periods of the on-o�sources are shown in Fig. 6(b).Fig. 7 shows the bandwidth vs. time plots for each of theTCP sessions under consideration. The bandwidth is mea-sured by averaging over 100 ms windows, with two adjacentwindows overlapping 50 ms. As can be seen, all four algo-rithms perform well. While 100 ms provides a very �ne gran-ularity of measuring bandwidth, it is a very large numberwhen it comes to one hop average packet delay. Therefore,even though the worst-case packet delays vary signi�cantlywith di�erent H-PFQ algorithms, the bandwidth distribu-tion are very similiar.7 Related WorkIn [15], H-WFQ is used to support integrated tra�c man-agement. The negative e�ects introduced by WFQ's highWFI on link-sharing and tra�c management algorithms arenot studied. To provide tighter bounds for real-time tra�c,all real-time queues need to be children of the root node, andlink-sharing between real-time and non-real-time sessions isaccomplished via a separate mechanism.In [11], an implementation of H-WFQ is presented. The

scheduler implemented is actually not an H-WFQ server, buta WFQ server in which the weights are dynamically changedaccording to the set of backlogged sessions in the packetserver. It is easy to show that such an implementation willnot only yield much larger delay bounds but also violate thelink-sharing goals in certain situations. The key problem isthat at any time instance, the set of the backlogged sessionsin a packet system can be quite di�erent from that in thecorresponding uid system. Adjusting the weight accordingto the set of backlogged sessions in the packet system canresult in large errors.In [6], a Class-Based Queueing (CBQ) algorithm is pre-sented to support link-sharing and integrated services. ACBQ server consists of a link-sharing scheduler and a gen-eral scheduler. The link-sharing scheduler decides whetherto regulate a class based on link-sharing rules and markpackets of regulated classes as ineligible. The general sched-uler services eligible packets using a static priority policy.Our work di�ers from this work in that we build our frame-work on H-GPS, which has theoretically proven propertiesfor supporting link-sharing, real-time service, and best-e�ortservice.A number of algorithms such as Self-Clocked Fair Queue-ing [4, 7], Stochastic Fair Queueing [10], De�cit RoundRobin [16], Frame-based Fair Queueing [17], and Start-timeFair Queueing [8] have been proposed to approximate GPSwith a lower complexity. However, none of them addressthe issue of worst-case fairness, and all of them have largeWFI's. As shown in the paper, H-PFQ algorithms based onthese algorithms result in much larger worst-case delay thanthat under H-WF2Q+. The Leap Forward Virtual Clock [13]achieves low WFI by using a SEFF policy similar to that



www.manaraa.com

..........

ON/OFF-4

TCP-1 TCP-4

ON/OFF-2

ON/OFF-3

.......

TCP-8

TCP-5       TCP-7

NR

TCP-9

TCP-10     TCP-11

Link 150 Mbps

3.75 Mbps3.75 Mbps

9Mbps

54Mbps

5.4Mbps 10.8Mbps32Mbps

16Mbps6.4Mbps

5.4Mbps

9.6Mbps

9Mbps

90Mbps

9Mbps

.1

.025 .025

.1

.1 .1

.3 .2 .5

ON/OFF-1

45Mbps

.3

.2.6

.6

.1

.6 N1

N3

N2(a) Class Hierarchy
40 Mbps

30 Mbps

20 Mbps

10 Mbps

0 Mbps
10000 ms5000 ms0 ms

Bandwidth (Mbps)

Time (ms)

Active Times and Bandwidth of ON-OFF Sessions

ON/OFF--4

ON/OFF--3
ON/OFF--2

ON/OFF--1

(b) Active Periods for On/O� SourcesFigure 6: Class Hierarchy, ON/OFF Sources and Measured Bandwidthused by WF2Q and WF2Q+. We hypothesize that it be-longs to the class of PFQ algorithms that approximate auid rate proportional server using a SEFF policy.The idea of implementing H-PFQ algorithm by integrat-ing one-level PFQ algorithm into a hierarchy was also in-dependently proposed in [8]. However, the details of thealgorithm are not presented and the analysis applies only toH-SFQ. In addition, there are two claims made in [8] that wedon't believe are accurate. In [8], it was claimed that SFQhad two unique advantages compared to other PFQ algo-rithms: �rst, it is the only algorithm that are fair when theserver is variable rate, second, it is the only algorithm thatdoes not require admission control (the sum of service sharesdoes not need to be less than 1). As discussed in Section 2,by measuring virtual time functions in unit of bits instead ofseconds, all existing PFQ algorithms are fair even when theserver is variable rate, and therefore, they can all be used toimplement H-PFQ algorithms. As shown in Section 6, eventhough the delay bounds provided by the resulted H-PFQalgorithms can vary signi�cantly, the fairness (link-sharing)property is maintained by all algorithms. For admission con-trol, as discussed in Section 2, it is the relative ratio's amongsession's service shares that are important. The exact val-ues of the service shares are not important. Normalizing allservice shares with respect to the sum of service shares willresult in an identical policy as before. Admission controlis required only for sessions that require minimum serviceguarantees { the total amount of services that are allocatedto the sessions requiring performance guarantees should beless than the total server capacity. This condition needs tobe held for all PFQ algorithms, including SFQ.8 ConclusionWe have made several contributions in this paper. First, weproposed a formal model based on the idealized H-GPS sys-tem to simultaneously support guaranteed real-time, adap-tive best e�ort, and controlled link-sharing services. Sec-ond, we presented an algorithm to implement H-PFQ byorganizing one-level PFQ servers in a hierarchical structure.Most of PFQ algorithms can be used for this purpose. The

key is to compute the system virtual time and per packetvirtual start/�nish times in unit of bits instead of seconds.Third, we develop a general framework for analyzing the de-lay and fairness properties of variable-rate and hierarchicalservers. We demonstrate, both empirically and analytically,that having a PFQ algorithm with a low WFI value is a pre-requisite for constructing H-PFQ servers that provide tightdelay bounds. Finally, we propose a new PFQ algorithmcalled WF2Q+ that is the �rst to have the following threeproperties: (a) providing the tightest delay bound amongall PFQ algorithms, (b) having the smallest WFI among allPFQ algorithms, and (c) having a relatively low complexityof O(log N). The resulted H-WF2Q+ provides similar de-lay bounds and bandwidth distribution to those providedby the idealized H-GPS server, and is the �rst in the lit-erature that provides both provably tight delay bounds forreal-time sessions and the full semantics of hierarchical link-sharing service.9 AcknowledgementWe would like to thank Donpaul Stephens and Ion Stoicafor helping with the simulations, Harrick Vin for stimulat-ing discussions on SFQ, and anonymous reviewers for theirinsightful comments.References[1] J.C.R. Bennett and H. Zhang. WF2Q: Worst-case fairweighted fair queueing. In Proceedings of IEEE INFO-COM'96, pages 120{128, San Francisco, CA, March 1996.[2] D. Clark, S. Shenker, and L. Zhang. Supporting real-timeap-plications in an integrated services packet network: Architec-ture and mechanism. In Proceedings of ACM SIGCOMM'92,pages 14{26, Baltimore, Maryland, August 1992.[3] R. Cruz. Service burstiness and dynamic burstiness mea-sures: A framework. Journal of High Speed Networks,1(2):105{127, 1992.[4] J. Davin and A. Heybey. A simulation study of fair queueingand policy enforcement. Computer Communication Review,20(5):23{29, October 1990.
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queue at node ph(i), the following holds forWph(i)(t1; dki ) � �ph(i)�ph+1(i)Wph+1(i)(t1; dki )� �ph(i) (31)where Wph(i)(t1; dki ) is the amount of service received by nodeph(i) in [t1; dki ]. Multiplying �i�ph(i) at both sides of (31), wehave�i�ph(i)Wph(i)(t1; dki ) � �i�ph+1(i)Wph+1(i)(t1; dki )� �i�ph(i) �ph(i)(32)Summing (32) for h=0, � � �, H-1 and eliminating common termson both sides, we haveWi(t1; dki ) � �i�pH (i)W (t1; dki )� H�1Xh=0 �i�ph(i) �ph(i) (33)Q.E.D.B Proof of Theorem 2Consider the kth packet of session i. Let aki and dki be its arrivaland departure times respectively. Based on the de�nition of SBI,for dki , there exists an instant t1 within the node p(i) busy periodthat includes also dki , where t1 < dki Qi(t�1 ) = 0, and Qi(t1) 6= 0holds, such thatWi(t1; dki ) � �i�p(i)Wp(i)(t1; dki )� (riDi � �i) (34)Since both t1 and dki are in the same server busy period ofnode p(i), the logical queue at node ph(i) is continuously back-logged with respect to server node ph+1(i), h=1, � � �, H-1. Also,server node ph+1(i) is worst-case fair with the logical queue atnode ph(i), therefore (31) holds. Multiplying �p(i)�ph(i) at both sidesof (31), we have�p(i)�ph(i)Wph(i)(t1; dki ) � �p(i)�ph+1(i)Wph+1(i)(t1; dki )� �p(i)�ph(i) �ph(i)(35)Summing (35) for h=1, � � �, H-1, and eliminating common termson both sides, we have:Wp(i)(t1; dki ) � �p(i)�pH (i)WpH (i)(t1; dki )� H�1Xh=1 �p(i)�ph(i) �ph(i) (36)Combining (34) and (36), we haveWi(t1; dki ) � ri(dki � t1)� H�1Xh=1 �i�ph(i) �ph(i) � riDi + �i (37)Since session i queue is FIFO and leaky bucket constrained, (14)and (15) holds. Combining them with (37), we have�i+ri(aki �t1) � ri(dki �t1)�H�1Xh=1 �i�ph(i) �ph(i)�riDi+�i (38)Rearranging terms and dividing both sides by ridki � aki � Di + H�1Xh=1 �ph(i)rph(i) (39)Q.E.D.


